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The Dey–Mittra conformal boundary conditions have been implemented for the finite-dif-
ference time-domain (FDTD) electromagnetic solver of the VORPAL plasma simulation
framework and studied in the context of three-dimensional, large-scale computations.
The maximum stable time step when using these boundary conditions can be arbitrarily
small, due to the presence of small fractional cells inside the vacuum region. Use of the
Gershgorin Circle theorem allows the determination of a rigorous criterion for exclusion
of small cells in order to have numerical stability for particular values of the ratio
fDM � Dt=DtCFL of the time step to the Courant–Friedrichs–Lewy value for the infinite sys-
tem. Application to a spherical cavity shows that these boundary conditions allow compu-
tation of frequencies with second-order error for sufficiently small fDM . However, for
sufficiently fine resolution, dependent on fDM , the error becomes first order, just like the
error for stair-step boundary conditions. Nevertheless, provided one does use a sufficiently
small value of fDM , one can obtain third-order accuracy through Richardson extrapolation.
Computations for the TESLA superconducting RF cavity design compare favorably with
experimental measurements.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The simulation of electromagnetics in complex structures has traditionally been done with finite element algorithms
using unstructured meshes. There are many specific situations where a finite difference representation of Maxwell’s equa-
tions is preferred over the finite element representation. However, the application of finite difference algorithms to these
problems has been limited since the regular Cartesian meshes normally used with finite difference do not represent struc-
tures with complex, curved geometries accurately unless a very fine grid resolution is used. Recent developments in bound-
ary algorithms have opened to door to accurate simulations of such structures with finite difference methods. Due to the
challenges associated with the development of three-dimensional algorithms as well as the expense of running large
three-dimensional simulations the testing of these algorithms has generally been limited to two dimensional situations.

Many complex three-dimensional structures are used in modern electromagnetic applications in science and engineering.
Examples include magnetrons used to generate high-power microwaves and radio frequency cavities used in particle accel-
erators. The geometry of these devices has evolved to very complex structures with a variety of curved surfaces making the
representation of such devices with a regular Cartesian mesh difficult. Although these cavities do often have some degree of
. All rights reserved.
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symmetry associated with them, there are usually coupling structures which break this symmetry and are often the location
of the interesting physics.

The most common method of modeling these structures with a finite difference code is to stair-step the boundary where
the structure curves. This results in very poor resolution of the geometry unless a very fine grid is used which often results in
an unacceptable increase in computational cost. Recent developments in boundary algorithms modify the finite difference
update at the boundary to take into account the curved surfaces. These are often referred to as cut cell methods as the finite
difference stencil will take into account how the boundary cuts across the grid cells.

Although it can be argued that finite element algorithms on an unstructured mesh are better suited to dealing with such
complex geometries, there are many cases where it is appropriate to use finite difference methods. The finite difference ap-
proach provides a critical advantage in terms of equivalency between the discrete Maxwell and continuity equations and the
exact continuous equations, which describe the real world. For the typical choice of the Buneman [1] current allocation and
the Yee [2] finite differencing algorithm, there are difference-equation analogues to all important vector differential identi-
ties satisfied in the real world. For example, there is a difference-equation version of the Poynting theorem that ensures en-
ergy conservation to machine precision, for the electromagnetic fields (in absence of particles). Since most of these identities
are not well defined at boundaries in the continuum the addition of boundary methods to FDTD simulations does not impact
this advantage since they still apply away from the boundaries.

The physics of the devices mentioned above often include the presence of charged particles interacting with the fields and
cavity structures. The use of Particle-In-Cell (PIC) methods remains the most popular way of modeling the presence of
charged particles interacting with electromagnetic fields. In simulations where a full Maxwell treatment of the fields is re-
quired and the charged particles are modeled with PIC, finite difference methods are better suited since depositing charge
and current from the particles to the grid and the interpolation of the fields back to the particles positions are well under-
stood when using a structured, Cartesian mesh. There are complications with particle dynamics in the cut cells including
how properly to do the field interpolation and how to prevent the creation of unphysical image charges, but there are meth-
ods to deal with these issues.

2. Background
The Yee [2] finite difference algorithm simulates electromagnetic fields on a regular grid. The Yee algorithm achieves sec-
ond-order error by centering all finite differences in space and time; this requires offsetting the components of the electric
and magnetic fields as shown in Fig. 1, as well as offsetting the electric and magnetic fields by one-half time step. For exam-
ple, the magnetic field is advanced in time by the following finite difference version of @Bz=@t ¼ �ðr� EÞz:
Bnþ1=2
z;iþ1=2;jþ1=2;k ¼ Bn�1=2

z;iþ1=2;jþ1=2;k þ
Dt
Axy
� En

x;iþ1=2;j;k � lx � En
x;iþ1=2;jþ1;k � lx

�
þEn

y;iþ1;jþ1=2;k � ly � En
y;i;jþ1=2;k � ly

�
; ð1Þ
where Bnþ1=2
z;iþ1=2;jþ1=2;k is the z-component of the magnetic field in cell ði; j; kÞ at time t ¼ ðnþ 1=2ÞDt; lx and ly are the lengths of

the cell edges on which Ex and Ey are located, and Axy ¼ lxly is the area of the face centered at Bz.
All field components in Eq. (1) are located on the same cell face, with Bz at its center and Ex and Ey on the edges. This

algorithm is appropriate when no conducting boundary cuts through the face.
When the conducting boundary cuts through a cell face, we can approximate the boundary with a nearby boundary that

never cuts through cells – i.e. stairstepping – and use the Yee algorithm, setting the electric field to zero on cell edges that
border the conducting boundary. Stairstepping a boundary introduces global first-order error (e.g. the frequency of a simu-
lated cavity would have an error scaling as the cell-length).

Second-order error can be attained using the Dey–Mittra [3] algorithm, which can simulate partial faces. The Dey–Mittra
algorithm advances the electric field in the same manner as the Yee algorithm. The only difference is the electric field is set to
zero on edges totally contained within the conductor. The Yee algorithm is also used to advance the magnetic field on cell
faces uncut by the conducting boundary. On cell faces cut by the boundary, however, the Dey–Mittra algorithm adjusts the
edge lengths and the face areas to reflect the lengths and areas not inside the conductor: for example,
Fig. 1. Field components in the Yee mesh.
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Bnþ1=2
z;iþ1=2;jþ1=2;k ¼ Bn�1=2

z;iþ1=2;jþ1=2;k þ
Dt

Axy;iþ1=2;jþ1=2;k

� En
x;iþ1=2;j;k � lx;iþ1=2;j;k � En

x;iþ1=2;jþ1;k � lx;iþ1=2;jþ1;k þ En
y;iþ1;jþ1=2;k � ly;iþ1;jþ1=2;k � En

y;i;jþ1=2;k � ly;i;jþ1=2;k

� �
: ð2Þ
Here, Axy;iþ1=2;jþ1=2;k is the area of the face (where Bz;iþ1=2;jþ1=2;k is located) outside the conductor, and similarly for the edge
lengths.

Eq. (2) essentially advances Bz by taking the line integral of E around the area of the cell face, excluding the conductor; of
course E � dl is zero along the conductor, leaving only the line integral of E around the parts of the edges outside the conduc-
tor. When advancing the magnetic field, the Yee algorithm uses uniform li and Aij, whereas the Dey–Mittra algorithm adjusts
the lengths and areas from cell to cell to allow simulation of partial cells.

The Dey–Mittra algorithm can lead to instability when simulating cells that are mostly contained within the conductor.
Intuitively, one can think of this instability being related to the Courant–Friedrichs–Lewy condition: roughly, light must not
cross more than one cell during a single time step to avoid instability. When the Dey–Mittra scheme includes very small
cells, a very small time step must be used.

To avoid infinitesimally small time steps using the Dey–Mittra algorithm, one must ignore cell faces with only small area
fractions outside the conductor, effectively stairstepping over such faces. By examing the Courant stability of the Dey–Mittra
algorithm, we will determine a condition for deciding when a face must be ignored, given a chosen time step. Before we
examine Dey–Mittra stability, we will review the stability criterion for the time step using the Yee algorithm.

3. The maximum stable time step for the Yee algorithm

The maximum stable time step for the Yee algorithm is the well-known Courant–Friedrichs–Lewy time step; we derive it
using Gershgorin’s circle theorem. The Maxwell wave equations can be represented as matrix-vector operations, where e is a
column vector containing all electric field components at all locations on the grid, and similarly b is the magnetic field. Max-
well’s equations, discretized spatially, can be written:
db
dt
¼ �C � e; de

dt
¼ Cy � b;

d2b

dt2 ¼ �C � Cy � b � �D � b; ð3Þ
where matrix operators C and Cy are adjoints of each other, and D is self-adjoint and positive semi-definite; C is a forward-
curl operator, Cy is a backward curl operator, and D is basically the finite difference Laplacian operator. Diagonalizing D re-
duces the problem to a collection of simple harmonic oscillators (the eigenmodes of D) with frequencies that are the square
roots of the eigenvalues of D.

The time discretization of a harmonic oscillator can lead to an unphysical instability if the time step is too large compared
to the oscillation period. Stability for leap-frog time-integration of a simple harmonic oscillator with frequency x requires a
time step satisfying
xDt < 2: ð4Þ
Therefore, the maximum stable time step for integrating Eq. (3) is
Dtmax ¼ 2=xmax; ð5Þ
where xmax is the maximum frequency, i.e. the square root of the maximum eigenvalue of the operator D.
The maximum stable time step depends on the maximum eigenvalue of D. We can place an upper bound on the eigen-

values of D using the Gershgorin Circle theorem [4], which tells us that the eigenvalues of D must satisfy
x2=c2
6maxi

X
j

jDijj
 !

; ð6Þ
where Dij are the matrix elements of D, and x2=c2 are the eigenvalues of D – as we have written Eq. (3) – and c is the speed of
light.

In the Yee algorithm, D is basically the finite difference Laplacian operator ð�r2Þ, with
Dii ¼
2

Dx2 þ
2

Dy2 þ
2

Dz2 : ð7Þ
Besides the diagonal, each column of D contains only six other non-zero elements: �1=Dx2 twice, �1=Dy2 twice, and �1=Dz2

twice. Applying Gershgorin’s circle theorem we see that eigenvalues of D must satisfy:
x2

c2 6
4

Dx2 þ
4

Dy2 þ
4

Dz2 ð8Þ
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with each column having 2d other non-zero elements which are all one. From this we can conclude that for stability,
Fig. 2.
assume
Dt 6
2

xmax
6

1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Dx2 þ 1

Dy2 þ 1
Dz2

q : ð9Þ
In fact, this is exactly the Courant–Friedrichs–Lewy condition.
For completeness, we point out the importance of having x2=c2 P 0, which is guaranteed because D is positive semi-def-

inite (as is any matrix of the form CCy). If x2=c2 could be negative or complex, then the frequency x could have an imaginary
part, corresponding to exponentially growing and decaying modes that violate the conservation of energy.

4. Stability for the Dey–Mittra algorithm
To avoid instability with the Dey–Mittra scheme, the time step must be reduced below the Courant time step used for the
Yee algorithm, because the Dey–Mittra algorithm allows smaller cells. Explicitly, we can write the Dey–Mittra algorithm as
d2b

dt2 ¼ �A�1 � C � L � Cy � b � �D0b; ð10Þ
where C is the same as in the Yee algorithm, Eq. (3), and A is a diagonal matrix containing the area fractions of each face
outside the conductor (A is diagonal because each face corresponds a unique element of b), and L is a diagonal matrix con-
taining the length fractions for each edge (each edge corresponds to an element of e). When a cell has a small fractional area,
A�1 has a large diagonal element, and therefore D0 has a large eigenvalue, which forces the time step to be small (Eq. (5)).

If one cell face in the simulation has nearly vanishing area, a nearly infinitesimal time step must be used. Therefore, an
efficient simulation neglects (stairsteps) such small (fractions of) cells to allow a larger time step. Using the Gershgorin circle
theorem, we can determine which cut faces can be neglected to guarantee stability with a given time step. Whether a cell
face should be neglected depends not just on the fractional area of the face, but also on the fractional edge lengths.

We define the desired time step to be fDMDtCFL where DtCFL is the Courant–Friedrichs–Lewy time step, given in Eq. (9).
There are three possible cut-cell types whose stability must be checked. The first is when two adjacent edges on a cell face

are cut where the resulting triangle is outside the boundaries. In this case the face is stable for a full Courant time step and
nothing else needs to be done. The second case is again when two adjacent edges are cut but now the triangle is inside the
boundary. The third case is when two opposite edges are cut created a trapezoid. These three cases are shown in Fig. 2. We
consider each case in turn by writing out the magnetic field update as a line integral around the face,
dUB

dt
¼ AxydBz

dt
¼ �

I
E � dl ’ �

X
Ei � li; ð11Þ
where UB is the magnetic flux though the face, Axy is the area of the cut face, and li is the length of the cut cell sides. Taking
the time derivative of Eq. (11) we arrive at
Axyd2Bz

dt2 ¼ �
X dEi

dt
� li; ð12Þ
By replacing the dEi=dt terms with the finite difference representation of Ampere’s Law we can collect all the matrix terms
and apply Eq. (6) to determine the stability condition for the cell. Since li;Axy, and the number of terms in the sum in Eq. (12)
will vary depending on how the cell is cut, each boundary cell will have a different stability condition.
The various ways a conformal boundary can cut across the face of a Yee cell. The area to the right of the cut (dashed line) in these examples is
d to be metal.
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As an example of how this is done we consider the case where two adjacent sides are cut by the boundaries and the tri-
angle formed by this cut is the part of the cell that is inside the simulation domain. This leaves us with only two terms in the
sum of Eq. (12),
Axyd2Bz

dt2 ¼ � dEx

dt
lx þ

dEy

dt
ly: ð13Þ
Replacing the time derivatives of the electric field using the finite difference representation of Ampere’s Law we arrive the
following equation,
d2Bz

dt2 ¼ c2 lx

Axy

DBy

Dz
� DBz

Dy

� �
þ ly

Axy

DBx

Dz
� DBz

Dx

� �� �
: ð14Þ
We can identify the matrix terms for the cell from this equation. By applying the Gershgorin theorem we do not need to
know the structure of the matrix just the value of all the terms for the cell. By combining the stability condition from Eq.
(4) and the constraints on eigenvalues of Eq. (14) from the Gershgorin theorem we find that if the following equation is sat-
isfied then the Dey–Mittra update in the cell in question will be stable,
1
fxDx2 þ 1

fyDy2 þ 1
fxDxDzþ 1

fyDyDz

1
Dx2 þ 1

Dy2 þ 1
Dz2

<
Dt2

CFL

Dt2 ¼
1

ðfDMÞ2
; ð15Þ
where fx ¼ lx=Dx; fy ¼ ly=Dy so Axy ¼ 1
2 fxfyDxDy and DtCFL is the Courant time step for a normal cell.

Taking limit of Dz!1 to get the stability condition,
1
fxDx2 þ 1

fyDy2

1
Dx2 þ 1

Dy2

<
Dt2

CFL

Dt2 ¼
1

ðfDMÞ2
: ð16Þ
Following a similar procedure for faces cut by the boundary on opposite edges (the x-edges in this case) gives the following
stability condition in 3D,
1
2aDx2 þ 1

2aDxDzþ 1
Dy2 þ 1

DyDz
1

Dx2 þ 1
Dy2 þ 1

Dz2

<
Dt2

CFL

Dt2 ¼
1

ðfDMÞ2
; ð17Þ
where a ¼ Axy=DxDy. There are now two possibilities in 2D. The first is when the unsimulated direction is perpendicular to
the face. The stability condition for this case is found by taking the limit Dz!1,
1
2aDx2 þ 1

Dy2

1
Dx2 þ 1

Dy2

<
Dt2

CFL

Dt2 ¼
1

ðfDMÞ2
: ð18Þ
The second possibility is when the uncut edges of the face are in the unsimulated direction. In this case the stability condi-
tion is found by taking the limit Dy!1,
1
2aDx2 þ 1

2aDxDz
1

Dx2 þ 1
Dz2

<
Dt2

CFL

Dt2 ¼
1

ðfDMÞ2
: ð19Þ
With a time step Dt satisfying the above condition, the simulation is guaranteed to be stable, but Dt is not necessarily the
maximum stable time step.

5. Application to frequency calculations

To extract the mode frequency of a cavity from a simulation, we used a common method of exciting modes of known
frequencies. At the beginning of the simulation a current source whose spatial profile approximates the profile of the known
mode is initially applied to the simulation. The current source will have a gaussian envelope in time and with a center fre-
quency that matches the known mode frequency. By having the envelope cover several periods of the mode, the current
source will be peaked around the mode frequency in frequency space. By choosing the breadth of the gaussian we can insure
the peak is narrow enough so only the mode of interest is excited. Once the current source is shut off the cavity will continue
to oscillate at the mode frequency. The bottom plot in Fig. 3 shows the current for a typical current source used to ring up the
cavity mode, with the resulting electric field in the same direction as the current source shown in the top plot of Fig. 3. This
method of driving cavity can be used to study the mode structure of cavities whose modes cannot be determined analytical
or it can be used to ring cavities with known mode structures to compare frequencies between the simulated cavities and the
real cavities.

We use this method of driving cavity oscillations to perform convergence tests of the Dey–Mittra algorithms. We run sim-
ulations for a known mode of a specific cavity shape where we keep the physical dimensions of the cavity fixed but we in-
crease the number of grid cells used in each direction. This gives us a series of simulations at greater and greater grid



Fig. 3. Time series of the current driver (lower plot) and the resulting electric field (upper plot) for a typical single mode cavity simulation used to
determine the mode frequency of the cavity.

C. Nieter et al. / Journal of Computational Physics 228 (2009) 7902–7916 7907
resolution so we can determine how the simulation results converge to the physical value of the mode frequency. These sim-
ulations were run using the finite-difference time-domain electromagnetic field solver of the VORPAL plasma simulation
framework. The electromagnetic solver in VORPAL has both Dey–Mittra boundaries as well as stair-step boundaries.

To extract the mode frequencies we record the field at every time step at a point in the cavity close to a spatial maximum
of the mode. We then fit this time series (excluding the time while the driving current is on) to a sum of cosines where the
amplitude, frequency and phase of each term is a free parameter. Since the cavity oscillation is dominated by the mode of
interest only a few terms are needed, typically two or three. The term with the highest amplitude corresponds to the mode of
interest so that fitted frequency is taken as the mode frequency.

The first case that we determine the frequency convergence for is the lowest mode of a spherical cavity. We consider the
lowest mode of the cavity where the electric field is in one direction in the cavity. The mode has a continuous degenerancy
depending on the direction that the electric field is pointed. By driving a current in the cavity we pick a direction for the field.

In Fig. 4 we plot the error in the measured cavity frequency for the convergence tests for the spherical cavity. The triangles
are the measured frequencies for a series of VORPAL runs using stair-step boundaries and the circles are the measured fre-
quencies for a series of runs using the Dey–Mittra boundaries with fDM ¼ 0:25. The dashed straight lines represent first and
second order scaling in the grid spacing. The error for the Dey–Mittra algorithm is in general several orders of magnitude
lower than stair-step boundaries at the same grid spacing. The stair step data closely follows the first order scaling line
where the Dey–Mittra data follows the second order line. However, for very fine grid resolutions the Dey–Mittra results be-
gin to show a first order tail.

The second case that was studied is a standing wave in a rectangular wave guide. The ends of the wave guide are closed
forming a box cavity whose modes correspond to a standing wave of a rectangular wave guide mode. The input file for these
runs is designed so the orientation of the cavity axis can be rotated with respect to the grid axis where both the azimuthal
and zenith angles can be varied. This allows us to test the Dey–Mittra algorithm by having the cavity walls cut across the grid
cells.

In Fig. 5 we plot the error in the measured frequency for a closed waveguide which is rotated by 60� in the x� y plane and
by 30� in the x� z plane. Again the triangles are the measured frequencies from runs using stair-step boundaries and the
circles are from runs using Dey–Mittra boundaries with fDM ¼ 0:25. The dashed straight lines represent first and second order
scaling in the grid spacing. Again the Dey–Mittra results follow the second order line and the stair step results follow the first
order line.

The spherical and box cavity provide good test cases since a closed analytical solution exists for such geometries allowing
comparisons to made with known results. However, the geometries that are studied by codes such as VORPAL are consid-
erably more complex. Superconducting radio frequency cavities (SRF) used in particle accelerators are an good example
of a situation where an electromagnetic-PIC code like VORPAL which can model complex boundaries would be useful [5].
A simulation of the nine cell TESLA cavity design [6] was done to try and identify a set of experimentally known higher order
modes. The TESLA cavity consists of nine elliptical superconducting cavities and it is under development for use as an



Fig. 4. Relative frequency error for the lowest mode of a spherical cavity plotted against the number of grid cells used in each dimension. The triangles are
results from simulations using stair-step boundaries and the circles are results from simulations using the Dey–Mittra boundaries with fDM ¼ 0:25. The
dashed straight lines represent first and second order convergence and are not fits to the computational data.

Fig. 5. Relative frequency error for the lowest mode of a closed rectangular waveguide cavity plotted against the number of grid cells used in each
dimension. The triangles are results from simulations using stair-step boundaries and the circles are results from simulations using the Dey–Mittra
boundaries with fDM ¼ 0:4. The dashed straight lines represent first and second order convergence and are not fits to the computational data.
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accelerating cavity in the next generation of electron-positron colliders. The cavity modes were excited using a current pulse
similar to the ones used in our convergence runs but with broader support in frequency space so multiple modes would be
excited. The current source was present only in the first cavity and the electric field was then measured at every time step in
the same location as the driving current. The simulation was run for a long period of time (approximately 1000 periods of the
lowest TE111 mode) to provide good statistics to calculate a power spectrum. The solid line in Fig. 6 is a power spectrum
calculated by a VORPAL simulation showing several modes of the cavity. The individual data points are experimental data



Fig. 6. Comparison of experimental measured mode frequencies of the nine cell Tesla cavity with those found using VORPAL. The solid line is a power
spectrum calculated by a VORPAL simulation. The triangles and squares are experimentally measured frequencies for the TE111 modes. The symbols for the
mode frequencies is alternated so the data for each mode can be distinguished. Each group of triangles or squares represents results for a single mode.
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[7] for the TE111 modes (transverse electric and transverse magnetic) of the cavity. Each group of similar symbols (squares
and triangles) represents multiple experimental results for the same frequency. The location of the peaks in the VORPAL
power spectrum correlates with the average location of the experimental data on frequency axis for each of the TE111
modes. An additional TE111 mode frequency appears in the VORPAL data. It is possible that this could have been misiden-
tified in the TESLA experimental data as a TM011 mode so it does not appear in the experimental data for the TE111 fre-
quency band.

6. Transition between second- and first-order convergence

The frequency errors using the Dey–Mittra scheme for a spherical cavity (see Fig. 4) converge as the second power of the
grid cell size ðDxÞ for large cell sizes, but for smaller cell sizes the errors decrease with first-order in Dx. This transition arises
from the neglect of small fractional cell faces that allows the use of a reasonable time step (cf., Section 4). Fig. 7 shows that
the transition point can be pushed to higher resolutions by using smaller fDM – i.e. neglecting fewer fractional faces, at the
cost of reducing the maximum stable time step. If no faces are neglected, the error will always be second-order. Since fDM

represents the actual fraction of the Courant time step that keeps the accepted fractional cell faces stable the cost in terms
of run time is inversely proportional to fDM . However, once no faces are neglected no further benefit is gained by further
reduction in fDM .

We have more thoroughly explored the effect of fDM on the convergence of mode frequencies in a two-dimensional ellip-
tical cavity; we considered TE modes (where the electric field is entirely in the plane) of an elliptical cavity with major axis
1 m and minor axis 0.7 m, tilted with respect to the grid axes. As fDM is decreased, fewer cut faces are neglected; Fig. 8 shows
the fraction of neglected faces versus fDM for several different grid resolutions; empirically we find that for the elliptical cav-
ity discussed in this section
number of neglected faces
number of total faces

� f 2
DM

PDx
A

ð20Þ
where P is the perimeter and A the area of the ellipse.
Figs. 9–11 show the relative errors in the spatial eigenvalue (the square of the frequency) for the lowest 11 TE modes of

the elliptical cavity for fDM ¼ 0;0:2, and 0.5. (The TE modes are labeled as they would be in a cylindrical cavity, but with C
representing a cosine-like ‘‘azimuthal” dependence, and S sine-like.) For fDM ¼ 0, no cut faces are neglected (the time step
was chosen to be stable by trial and error) and the eigenvalue errors converge slightly better than OðDx2Þ. A relatively small
number of cut faces are neglected with fDM ¼ 0:2, and the error looks similarly second order, though there is a hiccough when
cut faces are neglected (as will be made clearer in the Section 7). For fDM ¼ 0:5, many cut faces are neglected, and the error is
not so convincingly second-order, especially at higher resolutions, where the convergence changes from second- to first-
order.



Fig. 7. Relative frequency error for the lowest mode of a spherical cavity for several different values of the fDM parameter plotted against the number of grid
cells used in each dimension. The circles, triangles, and squares are results for fDM ’s of 0.4, 0.25, and 0.1, respectively. The dashed straight line represents
second order convergence and is not a fit to the computational data.
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7. Richardson extrapolation of results

When the mode frequency is a sufficiently smooth function of the grid cell size Dx, Richardson extrapolation can be used
to find a frequency with higher order error from simulations with lower order error. For example, if we know that f ðDx1Þ ¼ f1

and f ðDx2Þ ¼ f2, then we can find a more accurate frequency f0, assuming error of order n, by fitting f ðDxÞ ¼ f0 þ aDxn for the
best value of f0. We found f0 using pairs of simulations with cell sizes Dx and Dx=2, assuming n ¼ 2.

When no cut faces are neglected, the Dey–Mittra method yields second-order error (Fig. 9), and can be extrapolated
to third-order error, as shown by Fig. 12. However, neglecting cut faces prevents extrapolation to third-order
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Fig. 10. The relative error in eigenvalue (frequency squared) versus grid resolution, for the lowest 11 TE modes of a 2D elliptical cavity, using fDM ¼ 0:2.
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Fig. 9. The relative error in eigenvalue (frequency squared) versus grid resolution, for the lowest 11 TE modes of a 2D elliptical cavity; no cut faces are
neglected.
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Fig. 11. The relative error in eigenvalue (frequency squared) versus grid resolution for the lowest 11 TE modes of a 2D elliptical cavity, using fDM ¼ 0:5.
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second-order error from simulations with the number of grid cells per major diameter, N ¼ 16 and 32 up to simulations with N ¼ 256 and 512 (Compare to
Fig. 9).
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error, using simulations from N ¼ 16 and 32 up to simulations with N ¼ 512 and N ¼ 1024. At coarse resolutions, the error seems roughly an order below
that in Fig. 10, but at fine resolutions the error is just below second order.
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(Figs. 13 and 14), because neglecting cut faces introduces an error that changes discontinuously with cell-size (as cell size
changes, there is point where a partial cell is suddenly omitted, or suddenly included). In other words, when some cut faces
are neglected, f ðDxÞ is not a smooth function, so it cannot be usefully extrapolated.

8. Boundary modes

As discussed in Section A, the stable time step Dtmax is reduced from the value DtCFL for the infinite system. This is caused
by the fact that the Dey–Mittra update introduces modes that have frequencies higher than those that can propagate
throughout the interior of the cavity. Hence, those higher-frequency modes are trapped in the vicinity of the boundary. There
are methods referred to collectively as area-borrowing methods [8,9] that eliminate the reduction of time step for stability. It
follows that such methods also eliminate boundary modes; if non-propagating, higher-frequency modes were present, the
reduction of the time step for stability would remain.

Fig. 15 shows the magnetic field from a simulation of a TE32 mode in a cylindrical cavity. Since it is a transverse electric
mode the magnetic field is perpendicular to the plane of the plot. The solid and dashed lines are contours representing the
analytical shape of the mode. The bright and dark spots at the edge of the cylinder are trapped boundary modes. In Fig. 16 we
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Fig. 14. The relative error in eigenvalue (frequency squared) versus grid resolution, using fDM ¼ 0:5, after Richardson extrapolation assuming second-order
error.

Fig. 15. Contour plot of the magnetic field for a simulation of a TE32 mode of cylindrical cavity. The bright peaks and dark troughs are trapped modes at the
cylindrical boundary.
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plot the magnetic field from the simulation as a function of the time. There are two dominant frequencies in the signal. The
lower frequency of 0.86 GHz corresponds to the TE32 mode. The higher-frequency of 11.8 GHz is the frequency of the
trapped mode. The cut off frequency for the computational grid in this simulation is 4.3 GHz, which is considerably lower
than the frequency of the trapped mode.

For computations of pure electromagnetics, such boundary modes can typically be avoided. For example, the method, dis-
cussed in Section 5, of adiabaticallly ringing up the cavity does not excite these higher-frequency modes. Perturbations that
are far from the boundaries also would not excite these modes. However, in particle simulations where particles can interact
with the walls (reflection, absorption, emission) the excitation of these modes could be problematic. Such modes would be
readily excited by the shot noise accompanying particle–wall interactions. Thus, the use of methods like those of Ref. [8,9]
will be important for simulations involving particles.

9. Challenges applying Dey–Mittra methods to EM–PIC simulations

In the present work we have focused on testing the Dey–Mittra cut cell algorithm using the FDTD electromagnetic solver
in VORPAL. VORPAL is also a Particle-In-Cell (PIC) code [10,11] used to represent plasmas. Many of the application areas
where we plan to apply the Dey–Mittra method involve the presence of a plasma. Since these will involve the use of the



Fig. 16. Time series for the magnetic field for one of the trapped modes in the cylindrical TE32 mode simulation.

7914 C. Nieter et al. / Journal of Computational Physics 228 (2009) 7902–7916
PIC model in VORPAL we discuss some of the issues that come up with cut cell electromagnetics when used in conjunction
with PIC algorithms.

PIC methods use a collection of macro-particles to represent charged particles with an arbitrary velocity distribution.
Rather than represent every particle in the distribution, each macro-particle represents a large collection of particles with
similar velocities. Since the macro-particles represent multiple particles, their locations are the average location of the par-
ticles they represent. The associated currents produced by the macro-particles are assigned to the computational grid used
by the Yee FDTD method by using area weighting to compute the amount crossing the dual-grid faces [1]. (The cells of the
dual-grid are offset from the regular cells by one-half cell in each direction; the electric fields are located at the faces of the
dual-grid cells.) Allowing particles to leave the simulation domain at the edge of grid does not present any problems, since
the currents produced by the particles as they leave the domain ensure all the macro-particles charge has been removed
from the simulation domain.

The situation is more challenging when a cut-cell boundary is involved. A macro-particle that crosses a cut-cell boundary
has left the simulated region and, so, should be removed. However, at the point of crossing a cut-cell boundary, the charge of
the particle will not necessarily have crossed all interior dual-grid interior surfaces. Thus, immediate removal can lead to
ghost charge (non-zero divergence of the electric field). This can accumulate to an unphysical degree. Several strategies
to eliminate this are possible, including immediate movement of the particle to an exterior regular grid node.

10. Summary and conclusions

The Dey–Mittra conformal boundary algorithm has given the VORPAL plasma simulation framework the ability to model
electromagnetics in complex geometries that are usually very challenging for a FDTD code running with a Cartesian mesh.
We have demonstrated that for global quantities such as the mode frequency of a cavity, the Dey–Mittra gives second order
convergence with a weak first order tail that only impacts the results when the grid resolution becomes fine enough that
small cut cells have to be replaced with stair-step boundaries to maintain stability. Since our implementation of the Dey–
Mittra algorithm includes a detailed stability analysis, we introduce a parameter, fDM which allows us to control the fraction
of the full CFL time that will be stable for the algorithm. This parameter allows the user to balance the accuracy of the meth-
od with the computational resources needed to run a simulation.

At the end of Section 5 we have applied VORPAL’s Dey–Mittra algorithm to the TESLA cavity design to be used in the Inter-
national Linear Collider (ILC). We compare the mode frequencies found by VORPAL with experimental measurements of the
cavity and find we can determine the number and frequencies of the cavity modes in the frequency band of interest.

The Dey–Mittra algorithm does have its drawbacks. The time step must be reduced relative to the Courant limit to main-
tain stability. Considering the gains made in the accuracy of the simulation and that the time step reduce is usually small
(50%) this is minor concern. The existence of trapped modes could conceivably cause problems for applications where the
physics at the boundary is being studied but the generation of these modes has not been seen much in practice. Area-bor-
rowing methods [8,9] achieve a similar level of accuracy without the various disadvantages of the Dey–Mittra method, but
they are more complex and difficult to implement.
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Appendix A. Implementation of conformal boundaries within VORPAL

VORPAL was designed from the beginning to support simulations of different dimensions with the same code base [12].
This means the finite difference update of the fields on the computational grid is not done with a simple set of nested loops
as is the case in many other codes. A stencil that represents the finite difference operator is ’walked’ over the grid by a class
structure that understands the layout of the grid and how it varies with different dimensions. The actual field data is stored
in a one dimension array and the walker classes know how move the stencil from point to point including skipping certain
cells that are not updated, such as the guard cells that exists for parallel messaging.

Since this structure already supported the skipping of certain cells it was not too difficult to introduce the simulation of
complex structures. The geometry information is stored in a separate class whose interface includes a method that deter-
mines if a point in space is inside or outside of the boundary. In the current implementation of VORPAL this information
is determined by a function that defines the boundary. When the electromagnetic update is set up, each cell is checked
to see if the cell is completely inside or outside of the boundary or if it the boundary cuts though the cell (making it a so
called cut-cell).

Since VORPAL uses the Yee [2] staggered mesh the electromagnetic update is effectively 2D for both 2D and 3D simula-
tions since only the curl equations are used and each of the difference equations involved is limited to field values that lie in
plane. In particular the Faradary update only involves field components on the faces of the cells.

For more primitive stair-step boundaries if a face is cut by the boundary then it is kept if more than 50% of the face’s area
is interior. A similar class is then used to walk the stencils across the grid, knowing what cells to skip based on the cells that
where identified during the set up. The Dey–Mittra method adds another level of complication since the stencils for the
boundary faces depend on how the boundary is cut though the face. We created a new class that represents the Dey–Mittra
stencil which is flexible enough to account for the differences between different cut faces. Two passes are now needed over
grid each with different walkers. The first pass updates the interior cells and skips the boundary and exterior cells. The sec-
ond pass updates the boundary cells, where each face has a unique stencil, and skips the interior and exterior cells.

The results of this stability analysis was incorporated into the Dey–Mittra implementation in VORPAL. The user specifies
the fDM parameter, determining how small his time step must be to maintain stability. During the set up of the updates for
the boundary cells in the simulation each of the cut cells is matched with the associated stability condition and if the con-
dition is not meet the cut cell is replaced with a stair-step boundary.

Following VORPAL’s object oriented design, the relation of the conformal boundary surface and the grid is stored in a sep-
arate object. Currently the boundary surface for a VORPAL simulation is described by a function, f ðx; y; zÞ ¼ 0. We use the
convention that when the function is negative that describes the interior of a conductor so no field update is done there
and when the function is positive that is a vacuum region where an electromagnetic update is needed. The boundary object’s
interface provides a method to determine if a spatial point is inside or outside the vacuum region and data structures which
list the index of all the grid cells that are cut by the boundary and the fractional lengths and area of all the cut edges and faces
of the cut cells.

At start up when the data structures for the cut cell are determined the various stability conditions discussed above are
checked against the fDM parameter given in the input file. If a cell face is found to be unstable for that time step fraction then
that cell face is not marked as a cut-cell face but is marked as either fully interior or fully exterior depending on how it is cut.
This results in a stair-step boundary for that cell face.

The electromagnetic fields use the information from the grid boundary object to set up three different sets of stencils to
be used in the finite difference update of the fields. One type of stencil corresponds to the Ampere update of the electric field.
This stencil does not use the cut-cell information and is applied to all the interior faces as well as all the cut-cell faces. There
are two types of stencils that correspond to the Faradary update of the magnetic field. The first is the standard stencil for the
Yee method which is applied to the interior cells. The second represents the Faraday integral around the cut edges of a cut-
cell and is only applied to the cut-cell faces.
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